Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 667: 127-131, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216828

RESUMEN

Retinal pigment epithelial (RPE) cells contribute to several clinical conditions resulting in retinal fibrotic scars. Myofibroblast trans-differentiation of RPE cells is a critical step in the process of retinal fibrosis. In this study, we investigated the effects of N-oleoyl dopamine (OLDA), a newer endocannabinoid with a structure distinct from classic endocannabinoids, on TGF-ß2-induced myofibroblast trans-differentiation of porcine RPE cells. Using an in vitro collagen matrix contraction assay, OLDA was found to inhibit TGF-ß2 induced contraction of collagen matrices by porcine RPE cells. This effect was concentration-dependent, with significant inhibition of contraction observed at 3 µM and 10 µM. OLDA did not affect the proliferation of porcine RPE cells. Immunocytochemistry showed that at 3 µM, OLDA decreased incorporation of α-SMA in the stress fibers of TGF-ß2-treated RPE cells. In addition, western blot analysis showed that 3 µM OLDA significantly downregulated TGF-ß2-induced α-SMA protein expression. Taken together these results demonstrate that OLDA inhibits TGF-ß induced myofibroblast trans-differentiation of RPE cells. It has been established that classic endocannabinoid such as anandamide, by activating the CB1 cannabinoid receptor, promote fibrosis in multiple organ systems. In contrast, this study demonstrates that OLDA, an endocannabinoid with a chemical structure distinct from classic endocannabinoids, inhibits myofibroblast trans-differentiation, an important step in fibrosis. Unlike classic endocannabinoids, OLDA has weak affinity for the CB1 receptor. Instead, OLDA acts on non-classic cannabinoid receptors such as GPR119, GPR6, and TRPV1. Therefore, our study indicates that the newer endocannabinoid OLDA and its non-classic cannabinoid receptors could potentially be novel therapeutic targets for treating ocular diseases involving retinal fibrosis and fibrotic pathologies in other organ systems.


Asunto(s)
Endocannabinoides , Epitelio Pigmentado de la Retina , Animales , Porcinos , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Dopamina/farmacología , Dopamina/metabolismo , Miofibroblastos/metabolismo , Colágeno/metabolismo , Fibrosis , Células Epiteliales/metabolismo , Receptores de Cannabinoides/metabolismo , Transdiferenciación Celular , Pigmentos Retinianos/metabolismo
2.
J Comp Neurol ; 528(8): 1392-1422, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31749162

RESUMEN

The present study examines cortical neuronal morphology in the African lion (Panthera leo leo), African leopard (Panthera pardus pardus), and cheetah (Acinonyx jubatus jubatus). Tissue samples were removed from prefrontal, primary motor, and primary visual cortices and investigated with a Golgi stain and computer-assisted morphometry to provide somatodendritic measures of 652 neurons. Although neurons in the African lion were insufficiently impregnated for accurate quantitative dendritic measurements, descriptions of neuronal morphologies were still possible. Qualitatively, the range of spiny and aspiny neurons across the three species was similar to those observed in other felids, with typical pyramidal neurons being the most prominent neuronal type. Quantitatively, somatodendritic measures of typical pyramidal neurons in the cheetah were generally larger than in the African leopard, despite similar brain sizes. A MARsplines analysis of dendritic measures correctly differentiated 87.4% of complete typical pyramidal neurons between the African leopard and cheetah. In addition, unbiased stereology was used to compare the soma size of typical pyramidal neurons (n = 2,238) across all three cortical regions and gigantopyramidal neurons (n = 1,189) in primary motor and primary visual cortices. Both morphological and stereological analyses indicated that primary motor gigantopyramidal neurons were exceptionally large across all three felids compared to other carnivores, possibly due to specializations related to the felid musculoskeletal systems. The large size of these neurons in the cheetah which, unlike lions and leopards, does not belong to the Panthera genus, suggests that exceptionally enlarged primary motor gigantopyramidal neurons evolved independently in these felid species.


Asunto(s)
Acinonyx/anatomía & histología , Leones/anatomía & histología , Neocórtex/anatomía & histología , Neocórtex/citología , Panthera/anatomía & histología , Animales , Felidae/anatomía & histología , Femenino , Masculino , Neocórtex/química , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...